The Generalized Rabinowitsch’s Trick

Dingkang Wang¹, Yao Sun², and Jie Zhou¹

¹ KLMM, Academy of Mathematics and Systems Science, CAS, Beijing, China
² SKLOIS, Institute of Information Engineering, CAS, Beijing, China

The classical Rabinowitsch trick was proposed by J.L. Rabinowitsch in his 1-page paper Zum Hilbertschen Nullstellensatz in 1929. This ingenious trick was used to prove the famous Hilbert’s Nullstellensatz theorem. Indeed, given polynomials \(f, f_1, \ldots, f_s \) in \(k[x_1, \ldots, x_n] \) or \(k[X] \). If \(f \) vanishes on the common zeros of \(f_1, \ldots, f_s \), then there exists polynomials \(a_0, a_1, \ldots, a_s \) in \(k[X, y] \), such that

\[
a_0(fy - 1) + a_1f_1 + \cdots + a_sf_s = 1,
\]

where \(y \) is an extra variable different from \(X \). Substituting \(y \) by \(1/f \), there exists an integer \(m \) such that \(f^m \) in the ideal which is generated by \(f_1, \ldots, f_s \).

We present a generalization of Rabinowitsch’s trick, which is an integration of Rabinowitsch’s trick with Bayer’s idea. We consider the following polynomial ideal

\[
J = I + (fy - z) \subset k[X, y, z],
\]

associated with \(I \) and \(f \), where \(y \) and \(z \) are two new variables different from \(X \).

We analyze the ideal \(J \) by studying its Gröbner bases using a block ordering in which \(y \gg z \gg X \). Using the structure of this Gröbner bases, we give the main theoretical result as follows.

Theorem 1. Let \(I \) be an ideal and \(f \) be a polynomial in \(k[X] \). Let \(G \) be a Gröbner basis of ideal \(J = I + (fy - z) \subset k[X, y, z] \) with respect to a block ordering such that \(y \gg z \gg X \).

1. Let \(P_s = \{lc_g, z(g) \mid g \in G \cap k[X][z], \text{lpp}_{y, z}(g) = z^k \text{ and } 0 \leq k \leq s \} \subset k[X] \).

 For any integer \(s \geq 0 \), \(P_s \) is a Gröbner bases of \(I : f^s \).

2. Let \(Q_s = P_s \cup \{lc_g, z(g) \mid g \in G, \text{lpp}_{y, z}(g) = y^t z^k, \text{ and } 0 \leq t \leq s \} \subset k[X] \).

 For any integer \(s \geq 0 \), \(Q_s \) is a Gröbner bases of \(I : f^s + (f) \).

The following result serves as the basis for checking if a polynomial is invertible or a zero divisor in a residue class ring as well as for checking its membership in the radical of an ideal.

Theorem 2. Let \(I \) be an ideal and \(f \) be a polynomial in \(k[X] \). Let \(G \) be a minimal Gröbner basis of ideal \(J = I + (fy - z) \subset k[X, y, z] \) with respect to a block ordering such that \(y \gg z \gg X \), and \(P_s, Q_s \) are constructed from \(G \) as stated in Theorem 1. Then the following asserts hold:

1. \(f \) is **invertible** in \(k[X]/(I : f^s) \) if and only if \(1 \in Q_s \) and \(1 \notin P_{s+1} \), i.e., \(I : f^s + (f) = (1) \) and \(f \notin I : f^s \). That is, there is a polynomial \(g = y^t z^s + p_t y^t z^{s-1} + \cdots + p_0 y + q_t z^s + \cdots + q_1 z + q_0 \) in \(G \), where \(p_0, \ldots, p_{t-1}, q_0, \ldots, q_t \in k[X] \) and \(0 \leq t \leq s \), and \(-q_{t+1} \) is an inverse of \(f \) in \(k[X]/(I : f^s) \).
2. \(f \) is a zero divisor in \(k[X]/(I : f^s) \) if and only if \(P_s \nsubseteq P_{s+1} \) and \(1 \notin P_{s+1} \), i.e. \(I : f^s \nsubseteq I : f^{s+1} \) and \(f \notin I : f^s \).

3. \(f \) is in the radical ideal \(\sqrt{I} \) if and only if there exists an integer \(s \) such that \(1 \in P_s \), i.e. \(I : f^s = \langle 1 \rangle \).

4. \(m \) is the smallest integer such that \(I : f^1 = I : f^m \), if and only if \(P_{m-1} \nsubseteq P_m = P_s \) for all \(s > m \). Further, \(P_m \) is a Groebner basis of \(I : f^\infty \).

The above results can be applied to automatical proving of geometric theorems.